Scalability of Machine to Machine systems and the Internet of Things on LTE mobile networks

Machine to Machine (M2M) systems are actively spreading, with mobile networks rapidly evolving to provide connectivity beyond smartphones and tablets. With billions of embedded devices expected to join cellular networks over the next few years, novel applications are emerging and contributing to the Internet of Things (IoT) paradigm. The new generation of mobile networks, the Long Term Evolution (LTE), has been designed to provide enhanced capacity for a large number of mobile devices and is expected to be the main enabler of the emergence of the IoT. In this context, there is growing interest in the industry and standardization bodies on understanding the potential impact of the scalability of M2Msystems on LTE networks.

The highly heterogeneous traffic patterns of most M2M systems, very different from those of smartphones and other mobile devices, and the surge of M2M connected devices over the next few years, present a great challenge for the network. This paper presents the first insights and answers on the scalability of the IoT on LTE networks, determining to what extent mobile networks could be overwhelmed by the large amount of devices attempting to communicate. Based on a detailed analysis with a custom-built, standards-compliant, large-scale LTE simulation testbed, we determine the main potential congestion points and bottlenecks, and determine which types of M2M traffic present a larger challenge. To do so, the simulation testbed implements realistic statistical M2M traffic models derived from fully anonymized real LTE traces of six popular M2Msystems from one of the main tier-1 operators in the United States.