In this paper, we shall consider the problem of deploying attention to the subsets of the video streamsfor collating the most relevant data and information of interest related to a given task. We formalize this monitoring problem as a foraging problem. We propose a probabilistic framework to model observer’s attentive behavior as the behavior of a forager. The forager, moment to moment, focuses its attention on the most informative stream/camera, detects interesting objects or activities, or switches to a more profitable stream.
The approach proposed here is suitable to be exploited for multi-stream videosummarization. Meanwhile, it can serve as a preliminary step for more sophisticated video surveillance, e.g., activity and behavior analysis. Experimental results achieved on the UCR Videoweb Activities Data Set, a publicly available data set, are presented to illustrate the utility of the proposed technique.